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We numerically investigate quantum rings in graphene and find that their electronic properties may be
strongly influenced by the geometry, the edge symmetries, and the structure of the corners. Energy spectra are
calculated for different geometries �triangular, hexagonal, and rhombus-shaped graphene rings� and edge
terminations �zigzag, armchair, as well as the disordered edge of a round geometry�. The states localized at the
inner edges of the graphene rings describe different evolution as a function of magnetic field when compared
to those localized at the outer edges. We show that these different evolutions are the reason for the formation
of subbands of edge-states energy levels, separated by gaps �anticrossings�. It is evident from mapping the
charge densities that the anticrossings occur due to the coupling between inner and outer edge states.
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I. INTRODUCTION

Graphene is a bona fide two-dimensional material show-
ing a great versatility due to its unconventional electronic
properties and promising applications to nanoelectronics.1,2

Among the promises is the possibility of structuring
graphene at a mesoscopic length. Indeed, some groups have
already demonstrated that graphene can be cut in many dif-
ferent shapes and sizes, opening the door to the fabrication of
graphene nanodevices through the impressive experimental
obtention of graphene quantum dots,3–5 quantum rings,6 and
even antidot arrays.7 This perspective leads to interesting
scenarios since the electronic properties of graphene are
deeply influenced by its size and shape: as it is well known
for over 10 years, graphene nanoribbons have different prop-
erties depending on their width or on their edge
terminations.8–11 Besides the nanoribbons, some theoretical
works have also addressed the effects of confinement on the
electronic structure of graphene quantum dots �flakes� with
different geometries, sizes, and types of edge.12–14 Recently,
the energy levels of graphene quantum rings15,16 and of
graphene antidot lattices17,18 have also been theoretically in-
vestigated.

In this paper we numerically analyze the energy spectra as
a function of magnetic field �B� of graphene quantum dots
and graphene quantum rings, with focus on the complex evo-
lution of edge states in the graphene rings. Here we explore
the effects of the interplay among different degrees of free-
dom given by size, geometry, and edge symmetries on the
electronic properties of these graphene nanostructures. We
consider quantum dots and rings with sixfold �hexagons�,
threefold �triangles�, and twofold �rhombus-shaped� rota-
tional symmetry, with zigzag or armchair edges. Afterward
we consider round dots and rings, whose edges are not so
simple: they are cut in a way to approach the circular geom-
etry. Our attention is concentrated on the continuum limit19

of the energy spectra as a function of the magnetic flux of
these structures. Edge states appear with energies between
consecutive Landau levels �LLs� in such spectra, as could be
initially expected.20 However, the interplay between two dif-
ferent edges showing distinct local structures �the quantum
rings can be seen as graphene structures containing an anti-

dot, which introduces an inner edge to the system� leads to
some surprising subtleties. We observe that the presence of
the antidot introduces additional edge states, with a different
evolution under B: their energies are increased with increas-
ing B. For a better understanding of this behavior, the elec-
tronic densities of these states are mapped, and we show that
edge states that rise in energy with B are located in the in-
ternal edges of the ring structure. In this way, we show that
inner and outer edge states give origin to the formation of
subbands separated by energy gaps in the region of the spec-
tra between LLs. The anticrossing of levels, which defines
the subbands, occurs due to the interedge coupling of states.
The formation of subbands is highly influenced by symmetry
properties, and also by size effects, i.e., the relation between
the ring width and the magnetic length.

As will be seen throughout the paper, the choice of quan-
tum rings is strategic since the states within the edge-states
subbands can be perfectly associated to either inner or outer
edges, or to a coupling of both edges of the ring structure,
therefore enabling a good framework for studying the influ-
ence of the edges and edge junctions on the electronic struc-
ture and charge distribution.

II. MODEL

We use a tight-binding model for a finite two-dimensional
honeycomb lattice, considering nearest-neighbors
hoppings.19,21 The following noninteracting Hamiltonian is
considered,

H = �
i

�ici
†ci + t�

�i,j�
�ei�ijci

†cj + e−i�ijcj
†ci� , �1�

where ci is the fermionic operator on site i. The perpendicu-
lar applied magnetic field is included by means of Peierls
substitution, which means a complex phase in the hopping
parameter �t=2.7 eV�: �ij =2��e /h�� j

iA ·dl. In the Landau
gauge, where the electromagnetic vector potential is defined
as A= �0,Bx ,0�, one obtains �ij =0 along the x direction and
�ij = ���x /a�� /�0 along the �y direction. The magnetic
flux ��� per magnetic-flux quantum ��0=h /e� is defined as
� /�0=Ba2�3e / �2h�, and we use a=2.46 Å as the lattice
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constant for graphene. The on-site energies are taken as �i
=0.

To consider the ring geometries, a central region of absent
atoms �antidot� is defined in the structure by setting the hop-
ping parameters to zero for the absent atoms and the on-site
energies at the position of these atoms equal to a large value
outside the energy range of the spectra. The magnetic field
we consider is not limited to the central region of the ring,
but is homogeneously applied to the entire structure. By ex-
act numerical diagonalization of the Hamiltonian, the energy
spectrum as a function of magnetic flux is calculated for
different geometries of quantum rings.

III. EDGE STATES OF GRAPHENE RINGS

A. Antidot effects on the energy spectrum

We start by calculating the energy spectrum of the struc-
ture shown in Fig. 1�a�: a finite hexagonal lattice forming an
equilateral triangle with zigzag edges. Calling Nout the num-
ber of individual hexagonal plaquettes along each side of the
triangle, the total number of carbon atoms in this structure is
Nout

2 +4Nout+1.12 The energy spectrum for such a triangular

graphene quantum dot with Nout=45 is plotted in Fig. 1�c� as
a function of magnetic flux. One can clearly observe the
formation of the low-energy LLs: the n=0 LL at zero energy,
and the n= +1 and n= +2, with their square-root dependence
on magnetic field, typical from graphene systems �the spec-
trum is symmetrical with respect to the zero energy�. Also,
one can see the expected presence of edge states between
consecutive LLs and observe the evolution of these edge
states with magnetic flux until coalescing to the LLs.20 The
side length of the triangular structure is simply given by
aNout, where a=2.46 Å is the lattice constant. So, for the
case considered here of Nout=45, the side length of the tri-
angular dot is �11 nm.

We then take this nanostructure as a starting point to de-
velop a triangular quantum ring just piercing a triangular
hole �antidot� in the middle of it. The inner edges of this ring
are also zigzag. To define the size of the antidot, we call Nin
the number of hexagons at each side of the internal removed
triangle. The total number of atoms in this quantum ring is
now Nout

2 +4�Nout−Nin�−Nin
2 +6Nin. In Fig. 1�b� there is a rep-

resentation of such a ring for Nout=45 and Nin=12, and the
corresponding energy spectrum is shown in Fig. 1�d�. The
interesting observation is that the presence of the antidot
gives origin to additional edge states with a different evolu-
tion with magnetic field: states that go up in energy as the
magnetic flux is increased. It is also clear that with the intro-
duction of the antidot, the formation of the n�0 LLs starts at
higher magnetic fields when compared to Fig. 1�c� due to the
involved interplay between the inner and outer edge states.
On the other hand, this interplay seems to anticipate the for-
mation of the central LL, in these peculiar zero magnetic
field limit showing edge states at the Dirac point due to the
zigzag structure of the edge.9

To analyze in more details how the energy levels of the
edge states evolve with magnetic field, in Fig. 2�a� we zoom
in the energy scale of Fig. 1�d�. It now becomes evident the
formation of edge-states subbands, separated by energy gaps
that get smaller with increasing field. One can also note that
each of these subbands contains three crossing energy levels
for this triangular graphene ring.

B. Different evolutions for inner and outer edge states

In order to gain a deeper understanding of this quite com-
plex evolution of edge states, in Figs. 2�b�–2�d� we look to
the wave functions amplitudes of specific edge states. The
arrow �b� in the spectrum in Fig. 2�a� is pointing to an edge
state whose energy is reduced with increasing B. This state is
mapped in Fig. 2�b�, and clearly is localized at the outer edge
of the triangular ring. The radii of the circles plotted are
directly proportional to the wave-function amplitude on each
site, and we can observe a symmetrical and quasihomoge-
neous distribution over the edges, with higher concentrations
at the outer most lattice sites �and always on the same sub-
lattice, in this case of zigzag edges�. A high charge-density
accumulation is also observed close to each corner forming
part of a second charge-density belt.

The arrow �c� in Fig. 2�a� points to one of those states that
go up in energy with B, whose wave function is mapped in

FIG. 1. �a� Triangular graphene quantum dot with zigzag edges,
with Nout=45. �b� Triangular graphene quantum ring, with Nout

=45 and Nin=12. �c� Energy spectrum as function of the magnetic
flux for the structure in �a�. �d� Energy spectrum as function of the
magnetic flux for the structure in �b�.
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Fig. 2�c�. In agreement with the observation that those states
going up in energy appear only when the antidot in consid-
ered in the lattice, this is an edge state clearly located at the
inner edge of the triangular quantum ring. Its electronic
charge density is homogeneously distributed over the inner-
most lattice sites with decreasing amplitudes when approach-
ing the corners.

Once inner and outer edge states are clearly associated to
this different magnetic field dependence in the energy spec-
tra, the origins for this different dependence can be inter-
preted within a semiclassical picture. The semiclassical tra-
jectories of inner and outer edge states are confined to the
vicinity of inner and outer edges of the ring. While the clas-
sical motion of the guiding center of outer edge-states trajec-
tories is in the opposite direction to that of the cyclotron
motion,20 for inner edge states it is in the same direction of
the cyclotron motion. Indeed, looking at vacancies in
graphene,19 the localized states around such defects also rise

in energy with increasing magnetic field since vacancies are
actually minimal antidots.

This triangular ring system has a threefold rotational sym-
metry. The outermost atoms at the outer edges are all from
the same sublattice except for the three atoms located at each
corner. The atoms at the innermost edges are all from the
same sublattice, including that located at the corners, and this
is an important difference between the inner and outer edges
in the triangular zigzag quantum ring. The charge density in
the innermost edge is also sublattice modulated but with the
charge density dominantly on a different sublattice than at
the outermost edge.

C. Coupling between inner and outer edge states

An interesting observation emerges from mapping the
charge density of a state situated at an anticrossing, such as
the state indicated in the spectrum by the arrow �d� and with
the charge density depicted in Fig. 2�d�. It can be observed
that the wave function has amplitudes concentrated on both
the inner and the outer edges of the ring. This indicates that
a coupling between edge states from the inner edge and from
the outer edge is taking place. Consistently to this picture of
inner and outer edge states seeing each other and getting
coupled, we observe that the higher the magnetic flux, the
smaller are the energy gaps between the subbands. This can
be attributed to the fact that increasing the magnetic flux
� /�0, the magnetic length lB of the states gets smaller, re-
ducing the chances of coupling.

For a more quantitative comparison, the width �distance
between outer and inner edges� of the triangular ring we are
considering �with Nout=45 and Nin=12� is 24.1 Å and the
magnetic length is determined by: lB=�	 /eB
=0.913 Å /�� /�0. In this way, for a flux � /�0=0.02, for
which there are no energy gaps in the scale observed in the
spectrum of Fig. 2�a�, we have lB=6.46 Å. Reducing the
flux, for example for � /�0=0.01, where energy gaps al-
ready start to appear, the magnetic length is lB=9.13 Å. For
� /�0=0.005, a region of flux where the energy gaps are
more clearly defined, we have lB=12.9 Å, a value corre-
sponding to approximately half the width of the triangular
ring, and so compatible with the suggested coupling between
outer and inner edge states.

We recall the fact that we are showing typical charge-
density plots: any other chosen edge state that goes down �or
up� in energy has a very similar charge-density distribution
to that shown in Fig. 2�b� 	or Fig. 2�c�
, while any state at an
anticrossing shows wave-function concentration on both in-
ner and outer edges, similarly to the distribution observed in
Fig. 2�d�. It is interesting to notice that the coupling of both
edges does not break the sublattice modulation of the charge
density at each edge, but the state as a whole is now sublat-
tice mixed.

IV. WIDTHS, EDGES, AND CORNER EFFECTS ON THE
QUANTUM RINGS

A. Widths and subband gaps: Tuning the inner and outer
edge coupling

We now turn our attention to hexagonal graphene quan-
tum rings, first to compare the energy spectrum of this other

FIG. 2. �Color online� �a� Zoom in the energy scale of the spec-
trum shown in Fig. 1�d�, showing now only the first few low-energy
states and their evolution with magnetic flux. 	�b�–�d�
 Electronic
charge distribution of the selected edge states indicated by the ar-
rows and corresponding letters in the spectrum. Three typical be-
haviors are clearly defined: �b� a state whose energy is reduced with
B is an outer edge state, �c� a state whose energy is increased with
B is an inner edge state, and �d� at the anticrossing levels the wave
functions are distributed between the inner and the outer edges,
indicating a coupling between both edges. The radii of the circles
are proportional to the amplitude of the charge density.

INNER AND OUTER EDGE STATES IN GRAPHENE… PHYSICAL REVIEW B 79, 125414 �2009�

125414-3



geometry with the one from the triangular ring shown previ-
ously, and second to show the interesting effects of varying
the width of the quantum ring on the formation of the edge-
states energy subbands. In Figs. 3�a� and 3�b� there are rep-
resentations of two hexagonal quantum rings with different
widths. We once again consider a geometry with all zigzag
edge terminations. The total number of atoms in an hexago-
nal zigzag graphene ring such as these is 6Nout

2 −6Nin
2 , where

Nout and Nin are the number of hexagonal plaquettes along
each side of the hexagon and removed hexagon, respectively.
Again, the total length of each side of the structure is just
given by the number Nout or Nin times the lattice constant a.
For the ring in Fig. 3�a� we consider Nout=21 and Nin=7,
while the ring in Fig. 3�b� has Nout=21 and Nin=12.

The energy spectra as a function of magnetic flux of these
two rings are shown in Figs. 3�c� and 3�d�, respectively.
Comparing these spectra with one of an hexagonal quantum
dot �without the antidot in the middle�,13 it is evident that the
ring geometry introduces energy subbands separated by en-
ergy gaps, exactly as in the case of the triangular quantum
ring. However, it can now be observed that each band of the
hexagonal structures has six energy levels instead of the
three levels observed in the triangular structures. We note

that this follows the rotational symmetry fold number of the
hexagonal ring structure. Here the sublattice of the outer and
inner most edges alternates from one sublattice to the other
going from one arm of the hexagon to the next.13,15

The width of the ring �distance between outer and inner
edges� in Fig. 3�a� is 29.8 Å, while the width of the thinner
ring in Fig. 3�b� is 19.9 Å. When observing the effects of
varying the width in the energy spectra, these ring widths can
be compared to the magnetic lengths for corresponding mag-
netic fluxes, as described in Sec. III C. Corroborating the
idea that the coupling between inner and outer edge states is
directly related to the appearance of the energy gaps between
subbands, we clearly see that the thinner quantum ring shows
energy gaps in the spectrum until higher values of magnetic
fluxes �smaller magnetic lengths�.

B. Zigzag versus armchair edges: Differences in the quantum
ring spectra around the Dirac point

Having in mind the possible importance of the edge struc-
ture on the electronic structure of graphene quantum rings,
we now look to hexagonal quantum dot and quantum ring
systems with inner and outer armchair edges 	Figs. 4�a� and
4�b�
. The corresponding electronic structures as a function
of magnetic field are shown in Figs. 4�c� and 4�d�. The num-
ber of hexagonal plaquettes in each side of the hexagonal dot
considered is Nout=13 �the counting for armchair edge termi-
nations takes in account only the outermost plaquettes�, cor-
responding to a total of 2814 atoms in the nanostructure. For
the hexagonal ring, we considered Nout=13 and Nin=6,
where Nin is again the number of hexagonal cells in one side
of the hexagon removed.

Recalling that at B=0 there are no states associated to
armchair edges near the Dirac point,9 the central part �around
E=0� of the quantum ring spectrum here is completely dif-
ferent than in the case of zigzag edges �compare with Fig. 3�.
There are still edge-states subbands defined, each one con-
taining six energy levels, however the difference is that there
is now a wide subband around the Dirac point. An interesting
observation is the interchange between electronlike and hole-
like states in this region, as a function of magnetic field. The
huge difference in the electronic dispersion should be re-
flected in the related transport properties.

Similarly to the zigzag case, a clear and strong localiza-
tion of the charge density at the inner and outer edge occurs
in the decoupled edges limit �high magnetic field�, as ob-
served in the examples of Fig. 5�a� and 5�b�, corresponding
to the states pointed by the arrows �a� and �b� in the ring
spectrum 	Fig. 4�d�
. Around an anticrossing, as for the state
pointed by arrow �c�, the charge density, observed in Fig.
5�c� is spread out on the two edges, indicating the edge cou-
pling. As a difference between zigzag and armchair cases
edges, we see that an armchair termination leads to a sublat-
tice admixture of the charge density, different from the case
of the zigzag edges, were there is a sublattice modulation.10

C. Asymmetries introduced by the corners in diamond
rings

Next we consider a rhombus-shaped �diamond� graphene
quantum ring which has only zigzag edges. This ring is in-

FIG. 3. �a� Hexagonal zigzag quantum ring with Nout=21 and
Nin=7. �b� Thinner hexagonal zigzag quantum ring, with the same
Nout=21, but with Nin=12. �c� Energy spectrum as function of the
magnetic flux for the structure in �a�. �d� Energy spectrum as func-
tion of the magnetic flux for the structure in �b�.
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teresting because of its twofold rotational symmetry and be-
cause the upside outer edges of the diamond 	in the perspec-
tive of the pictures in Figs. 6�b�–6�d�
 are from one
sublattice meanwhile the downside outer edges are from the
other sublattice. However, similarly to the triangular quan-
tum ring, the up and down corners belong to a different
sublattice of the neighboring edges. The same sublattice ef-
fects occur at the inner edges. The number of atoms for this
kind of ring is given by 2�Nout

2 −Nin
2 �+4�Nout−Nin�−2, within

our definition. The energy spectrum of a diamondlike ring
defined by Nout=32 and Nin=10 �1934 atoms� is plotted in
Fig. 4�a�. One can clearly observe the evolution of the two
level bands, as expected from the symmetry of the structure.

All the rings investigated in the present work with zigzag
edges show similar energy spectra: at the low-field limit sub-
bands of energy states are formed, with the number of levels
in each subband given by the ring symmetry and well de-
fined outer and inner edge states at higher magnetic fields.
Nevertheless, a closer look at the electronic charge density
associated to different up and down going states, as well as at
anticrossings, for these diamondlike rings reveals a further
ingredient in the effect of edges on the electronic properties
of quantum dots and rings in graphene, namely, the edge

junctions at the corners. In a diamondlike ring the junctions
between the zigzag edges define single armchairlike units at
the left and right �inner and outer� edges 	Figs. 6�b�–6�d�
,
while the upper and lower corners remain zigzaglike. One
can see, in the sequences of electronic charge distributions in
Fig. 6, the high density around the armchairlike corners, in-
dependently from being a state at the outer edge 	Fig. 6�b�
,
inner edge 	Fig. 6�c�
, or even at an anticrossing 	Fig. 6�d�
.

This situation calls the attention to the possible role of the
edge junctions on the localization of the electronic charge in
graphene nanostructures, i.e., the localization of the elec-
tronic charge at a rough interface may depend on the sym-
metries at the corners that define the edge landscape.

D. Round rings—effects of irregular edges

We then analyze the cases of a round graphene dot and
ring. Here the edges of the structures are irregular and were
defined in a way to best approach circular geometries for
outer and inner edges, taking care not to leave edge atoms
with only one nearest neighbor,14 as observed in Figs. 7�a�
and 7�b�. Figures 7�c� and 7�d� show the corresponding
energy-magnetic flux spectra for these two structures. For the
round dot, the number of atoms that has been taken is 2283,
defining a radius of �47.1 Å. For the round ring, the exter-
nal radius is �47.1 Å, and the internal radius is �7.3 Å,
containing a total of 2226 atoms.

One can perceive from these spectra that despite the ir-
regularities of the edges, the main effects observed from the
previous geometries are robust and keep present here. Com-
paring the spectra for the circular ring 	Fig. 7�d�
 with the
one for the circular dot 	Fig. 7�c�
, it is again clear that the
circular antidot introduces inner edge states whose energies
are increased with increasing magnetic flux. In the low flux
limit of the ring spectra, anticrossing levels are again ob-

FIG. 4. �a� Hexagonal graphene quantum dot with armchair
edges, for which Nout=13. �b� Hexagonal graphene quantum ring
with armchair edges, with Nout=13 and Nin=6. �c� Energy spectrum
for the structure in �a�. �d� Energy spectrum for the structure in �b�,
where the arrows indicate states whose charge densities are plotted
in Fig. 5.

FIG. 5. �Color online� Electronic charge distribution of the se-
lected edge states indicated by the arrows and corresponding letters
in Fig. 4�d�. �a� An outer edge state. �b� An inner edge state. �c�
Coupling between the inner and the outer edges at an anticrossing.
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served in the edge-states region, indicating the coupling of
inner and outer edge states, exactly as observed and de-
scribed for the structures with well defined edge structures
�zigzag or armchair�. The main difference is that, as for this
geometry there is no rotational symmetry, we do not observe
the formation of edge-states subbands with well defined
number of energy levels.

V. CONCLUSIONS

The present paper focuses on the single-particle electronic
properties of finite graphene structures. The behavior of edge
states in graphene rings is investigated through the numerical
calculation of the electronic energy spectra of these rings as
a function of a perpendicular magnetic field and the mapping
of charge-density distributions. Several similar patterns may

be found among quantum rings with different symmetries
�triangular, hexagonal, diamond shapes�, including the for-
mation of subbands of edge-states energy levels, separated
by energy gaps �anticrossings�. The choice of quantum rings
revealed a strategic one because of the clear relation between
the symmetry of the structure and the number of levels in the
edge-states subbands. Furthermore, the edge-states levels
within the subbands can be perfectly associated to either in-
ner or outer edges, as well as the “bulk” region of the struc-
ture �coupling between edges�, therefore enabling a good
framework for studying the influence of the edges on the
electronic structure and charge distribution. If edge termina-
tions �zigzag or armchair� show to play an important role on
the electronic properties, specially for the states around the
Dirac point, the junction of the edges �corners� can also be
crucial for charge-density localization patterns.
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FIG. 6. �Color online� �a� Energy spectrum as function of the
magnetic flux for a rhombus-shaped quantum ring with zigzag outer
and inner edges, containing Nout=32 and Nin=10 hexagonal
plaquettes in each side length. Electronic charge densities: �b� going
down state marked with the �b� arrow in the spectrum, �c� the going
up state marked with the �c� arrow and �d� for an anticrossing state
marked with the �d� arrow. The radii of the circles denote the mag-
nitude of the charge density.

FIG. 7. �a� Round graphene quantum dot with 2283 atoms. �b�
Round graphene quantum ring with 2226 atoms. �c� Energy spec-
trum for the structure in �a�. �d� Energy spectrum for the structure in
�b�.
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